
Landau model for commensurate-commensurate phase transitions in uniaxial improper

ferroelectric crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 L293

(http://iopscience.iop.org/0953-8984/12/19/101)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 04:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) L293–L302. Printed in the UK PII: S0953-8984(00)10983-X

LETTER TO THE EDITOR

Landau model for commensurate–commensurate phase
transitions in uniaxial improper ferroelectric crystals
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Abstract. We propose the Landau model for lock-in phase transitions in uniaxially modulated
improper ferroelectric incommensurate–commensurate systems of class I. It includes Umklapp
terms of third and fourth order and secondary order parameters representing the local polarization.
The corresponding phase diagram has the structure of a harmless staircase, with the allowed wave
numbers obeying the Farey tree algorithm. Among the stable commensurate phases only those with
periods equal to an odd number of lattice constants have finite macroscopic polarizations. These
results are in excellent agreement with experimental findings in some A2BX4 compounds.

Many uniaxial systems undergo a sequence of incommensurate–commensurate (IC–C) or
commensurate–commensurate (C–C) phase transitions [1, 2]. It is generally accepted that
the main cause of such behaviour comes from the mode softening induced by competing
interactions between neighbouring sites in the crystal lattice [3, 4]. The mode softening
occurring at an arbitrary point in the Brillouin zone characterizes the so called class I of
IC–C systems, in contrast to the examples of the class II, for which the wave vectors of soft
modes are at (or close to) the centre or the border of the Brillouin zone [3].

The IC–C and C–C phase transitions are mostly of the first order, and are accompanied
by hysteresis and memory effects. Also, depending on the wave number of modulation, some
commensurate phases have a uniform (e.g. ferroelectric) component. Recent experiments
show that the modulation of commensurate phases is usually domain like, suggesting that
multisoliton configurations that are usually present in the incommensurate states are to some
extent frozen in lock-in phases as more or less dense soliton lattices [5–7].

Theoretical considerations of the class I of IC–C systems mostly start either from discrete
microscopic models of competing interactions or from phenomenological expansions of the
free energy functional. In the former cases the sequence of phase transitions is usually
characterized by complete or incomplete devil’s staircases for the wave number of ordering
[8–10]. The crucial importance of discreteness in these models comes from the assumption that
the couplings between neighbouring atoms or molecules are very strong. However, as argued
below, this assumption usually does not suit the microscopic properties of real materials.

The latter approach is based on the Landau theory of phase transitions, and is generally
appropriate for weakly coupled systems. The justification for continuous Landau models

0953-8984/00/190293+10$30.00 © 2000 IOP Publishing Ltd L293



L294 Letter to the Editor

comes from many experimental indications, e.g. from the neutron scattering data [11–14],
showing well-defined dispersion curves for collective modes with distinct soft-mode minima.
The basic Landau model, commonly applied to various systems of the class I, includes one
Umklapp term and the Lifshitz invariant. Within the mean field approximation it leads to the
sine–Gordon problem [15–17], which has one isolated phase transition of the second order
to the unique commensurate phase. However, in such systems one usually encounters more
commensurate phases, sometimes with the order of commensurability much higher than three
or four.

The phases with high order commensurabilities can be explained only by some extension
of the sine–Gordon model. One widely explored way is to introduce an additional set of
high order Umklapp terms [18–20], more precisely to take into account as many terms as
there are stable commensurate states in the experimental phase diagram. This approach is,
however, not free from serious disadvantages. At first, one introduces terms with powers of
the order parameter amplitude which are twice the order of commensurability, and as such are
beyond the standard (minimal) Landau scheme that includes only those higher (usually fourth)
order terms which necessarily guarantee the boundness of the free energy density from below.
Further on and even more important, the microscopic analyses, which are usually avoided in
such approaches, show that such terms are as a rule very small, and as such physically irrelevant
in weakly coupled systems.

A model which is, in contrast to those of [18–20], formulated within the standard Landau
scheme, and still explains the stabilization of high order commensurate phases, was proposed
recently by two of us [21, 22]. In this model we take into consideration two Umklapp terms
of the lowest possible orders in the free energy expansion, i.e. those of the third and fourth
order, and so remain strictly within the Landau theory [23]. A similar starting point, but with
Umklapp terms of orders higher than four, was proposed earlier in [24]. In [21, 22] we show
that, due to the competition between these two Umklapp terms, the periods of ordering follow
a harmless staircase with the values obeying a Farey tree algorithm, while the corresponding
commensurate configurations have the soliton lattice-like forms. Also, the hysteresis and
memory effects which are usually observed in particular materials are within the present model
interpreted as an intrinsic property, i.e. as consequences of the free energy barriers that appear
due to the nonintegrability of the Landau functional. These barriers prevent smooth transitions
between neighbouring thermodynamically stable configurations [25–27, 21, 22].

The Landau model from [21, 22] contains only one order parameter, and as such does
not possess all the ingredients needed for the explanation of phase transitions in uniaxial
improper ferroelectric materials. For such materials it is necessary to include a secondary order
parameter, responsible for the net polarization of particular modulation structures. Although
the necessity for such extension was put forward already by Iizumi et al [11], the subsequent
studies of phase transitions in improper ferroelectrics were developed mostly within the simple
sine–Gordon model with one Umklapp term [28, 29]. These analyses were concentrated on
one isolated IC–C phase transition, allowing at most for its first order nature.

Our aim is to show that the model of Iizumi et al [11], extended with the additional
Umklapp term which provides the mechanism for sequences of C–C phase transitions [21, 22],
enables the understanding of the complex phase diagrams in A2BX4 compounds. In particular
we explain several features of C–C phase transitions, such as harmless staircase behaviour of
the wave number of ordering, the first order nature of phase transitions, and the polarization
and modulation properties of commensurate phases.

We start from the assumption that the quadratic soft mode contribution to the Landau
expansion has minima at wave numbers (+qc,−qc), where q4 < qc < q3, with q4 = 2π/4
and q3 = 2π/3 (the unit length is taken equal to the lattice constant). The distances of qc
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from q3 and q4 are denoted by δ3 and δ4 respectively, with δ3 + δ4 = π/6, which gives the first
independent control parameter, δ4. The order parameter is complex, ρeiφ . Limiting the further
analysis to the temperature range well below the critical temperature for the transition from
the normal (disordered) to the incommensurate phase, we also make the usual approximation
of space independent amplitude ρ, and keep only the phase-dependent part of the free energy
density.

To allow for a finite polarization along some direction, we introduce a secondary order
parameter u, and assume that it is coupled to the third-order Umklapp term, in agreement with
the symmetry requirements for an A2BX4 crystal lattice [11]. In order to stabilize the free
energy with respect to changes in u, we also introduce the terms proportional to u2 and u′2.
The complete free energy density reads

f (φ, u, x) = 1

2
φ′2 +

2
u′2 +

1

2
λu2 + Bu cos

[
3φ + 3

(
π

6
− δ4

)
x

]
+ C cos (4φ − 4δ4x) (1)

where primes denote spatial derivation. The coefficients λ,B andC in equation (1) are rescaled
in order to simplify equations. Thus f (φ, u, x) is the original free energy density divided by
ρ2. Note also that after this rescaling the coefficients B and C in equation (1) are linear
and quadratic in the order parameter amplitude ρ respectively. Altogether, there are three
control parameters, namely δ4, B and C, while the parameter λ just defines a scale for the
polarization u. Among the elastic terms in equation (1), the first one (φ′-dependent) favours
the incommensurate sinusoidal ordering with the wave number qc. The last two Umklapp
terms cause the harmless staircase behaviour of the wave number of ordering [21, 22]. The
above Landau expansion follows, after spatial continuation, from microscopic models like,
e.g., those of [30, 31], that take into account local interactions presumably responsible for the
mode softening (and for the coupling to the secondary order parameter), and start from the
discrete presentation along the uniaxial direction.

The mean-field approximation for free energy (1) leads to the Euler–Lagrange (EL)
equations:

φ′′ + 3Bu sin

[
3φ + 3

(
π
6 − δ4

)
x

]
+4C sin (4φ − 4δ4x) = 0

u′′ − λu− B cos

[
3φ + 3

(
π

6
− δ4

)
x

]
= 0.

(2)

We are interested only in those solutions of EL equations which participate in the
thermodynamic phase diagram of the model (1). These solutions have, for given fixed values
of the control parameters, the lowest values of the averaged free energy

〈F 〉 = 1

L

∫
dxf [φ(x), u(x), x]. (3)

L is the macroscopic length of the system.
Before calculating such solutions, let us make few remarks on EL equations (2). They can

be considered as Lagrange equations for an equivalent classical mechanical problem. Note
however that general (‘classical mechanical’) solutions of these equations are not bounded,
since λ is positive. The only bounded solutions are periodic. From one side, obviously
only such solutions may participate in the thermodynamic phase diagram. From the other
side, the unboundedness of all other solutions makes the analysis of the present model more
complicated than that of the model without the secondary order parameter u [21, 22], for which
the mechanical phase portrait is bounded, although chaotic [32].

It is clear from above remarks that periodic solutions are orbitally unstable. Therefore they
cannot be calculated by a direct numerical integration of EL equations (2). Before embarking
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into another suitable numerical method, it is useful to establish, by extending straightforwardly
the previous treatment [22], necessary analytic conditions for these periodic solutions. We start
by looking for allowed periods, after taking into account that periodic solutions have to obey
the relations

φ(x + P) = φ(x) + φP
u(x + P) = u(x)

(4)

where P is the period and φP is the phase increment per period. From the EL equations (2) it
follows that allowed periods and phase increments are

P = 4k + 3l φP = δ4P − l
π

2
(5)

where k and l are integers. The corresponding values of the total wave number (measured
from the origin of Brillouin zone) are then

2πq ≡ qc − φP

P
= 2π

k + l

4k + 3l
. (6)

1/3 1/4

2/7

3/10 3/11

4/13

5/17 5/18

4/15

5/16 5/19

(0,1) (1,0)

(1,1)

(1,2) (2,1)

(1,3) (3,1)

(1,4) (2,3) (3,2) (4,1)

Figure 1. Farey tree for wave numbers q defined by equation (6).

The values of q given by equation (6) form a Farey tree structure, shown in figure 1 for
wave numbers between q = 1/3 (k = 0, l = 1 and P = 3) and q = 1/4 (k = 1, l = 0
and P = 4). The periodic solutions with q = 1/3 and q = 1/4 are the basic commensurate
configurations, favoured by the Umklapp terms of third and fourth order, respectively. Higher
order commensurate configurations are represented by periodic solutions with wave numbers
q positioned between q = 1/3 and q = 1/4 in the Farey tree. The values of integers k and
l are positive for all these configurations. We emphasize that the Farey tree structure for q is
not characteristic of usual continuous Landau models for IC–C transitions [15–17]. Here the
structure is imposed through the competition between two Umklapp terms in the first of EL
equations (2).

For numerical purposes it appears convenient to eliminate the explicit x-dependence from
one of Umklapp terms in the EL equations (2) by passing from the variable φ(x) to

ψ(x) = φ(x) +

(
π

6
− δ4

)
x. (7)

The EL equations (2) now read

ψ ′′ + 3Bu sin (3ψ) + 4C sin

(
4ψ − 2π

3
x

)
= 0

u′′ − λu− B cos (3ψ) = 0.
(8)
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The corresponding free energy acquires a δ4-dependent term in the form of the Lifshitz
invariant,

F =
∫

dx

{
1

2

[
ψ ′ −

(
π

6
− δ4

)]2

+
1

2
u′2 +

1

2
λu2 + Bu cos (3ψ) + C cos

(
4ψ − 2π

3
x

)}
(9)

which considerably simplifies the calculation of the δ4-dependence of the averaged free
energy (3) for particular periodic solutions of the EL equations (8). Note that these equations
do not contain the parameter δ4, so that it is sufficient to find solutions in variable ψ(x) for
some parameter values of B and C.

Table 1. Boundary conditions for periodic solutions of the EL equations (2).

k l Type x0 ψ0 u0 u′
0

A 0 0 0
odd odd

B 1 π/6 0

A 0 0 0
even odd

B 1 π/6 0

A 0 0 0
odd even

B 3/2 0 0

Once the analytic conditions (5) are established, the orbitally unstable periodic solutions
of equations (2) can be systematically calculated by treating equations (2) as a boundary
value problem and using an appropriate numerical algorithm suitable for nonlinear differential
equations, such as the finite difference method. The boundary conditions have to be specified on
the left and right end points of the integration, i.e. for x = x0 and x = x0 +P . It is convenient to
put x = x0 at one of the inflection points of ψ(x) [22]. To complete the boundary conditions
we still have to find out values of ψ(x0) and one of the values u(x0) or u′(x0), as will be
discussed in detail elsewhere [33]. Table 1 contains choices of x0, ψ(x0) and u(x0) or u′(x0)

that specify completely the appropriate boundary conditions. As previously, [21, 22], we find
two independent periodic solutions for given values of k and l (i.e. for a given wave number q).
They differ by symmetry and have distinct average free energies. These solutions are denoted
as type A (antisymmetric in ψ , symmetric in u) and type B (without particular symmetry).
These solutions are uniquely determined once the parameters (k, l) [i.e. (P, φP )] are chosen.
Note that they do not depend continuously on the parameter δ4. The additional minimization
of the free energy (9) provides only the δ4-dependence of ranges of stability for each pair (k, l).

Three low order periodic solutions of equation (8), with wave numbers q = 1/3, 1/4 and
2/7, are shown in figure 2. For each of these values the phase of the primary order parameter,
ψ(x), shows qualitatively different behaviour. A linear x-dependence of ψ (i.e. a simple
sinusoidal modulation of the primary order parameter) is realized for q = 1/4. For q = 1/3ψ
has an additional sinusoidal variation, while forq = 2/7 one encounters the periodic alternation
of short domains with q = 1/4 and q = 1/3 modulations, or, in other words, the formation of
a dense soliton lattice. The tendency towards more and more dilute soliton lattices strengthens
as one goes down along the Farey tree from figure 1. The secondary order parameter u(x), i.e.
the local polarization, either changes periodically in space with alternate positive and negative
values forming an antiferroelectric lattice (type B solution from figure 2(a), and type A and
B solutions from figures 2(b) and 2(c)), or has everywhere a ferroelectric space dependence
(type A solution from figure 2(a)).
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Figure 2. Solutions of EL equations (8) ψ(x) (phase of the primary order parameter) and u(x)
(local polarization): k = 0, l = 1, q = 1/3 (a), k = 1, l = 0, q = 1/4 (b) and k = 1, l = 1,
q = 2/7 (c). Other parameters are B = 0.1, C = 0.1, λ = 1.
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From the macroscopic point of view we are interested in spatially averaged polarizations,
given by

〈u〉 = 1

P

∫ x0+P

x0

u(x)dx (10)

for periodic solutions. The values of 〈u〉 for solutions with various values of the wave number
q are listed in table 2. Note that the averaged polarization 〈u〉 vanishes for all solutions with
even values, and all type B solutions with odd values, of the period P .

Table 2. Polarization properties of commensurate phases with wave number q (equation (6)).
Letter F indicates that particular solution have nonzero average polarization (equation (10)).

k l q Type 〈u〉
A F

odd odd even
odd

B 0

A F
even odd odd

odd
B 0

A 0
odd even odd

even
B 0

The above boundary value method enables the calculation of thermodynamically stable
solutions for rather high values of the parameters k and l in equation (6). Here we limit the
analysis of the phase diagram by keeping up to the tenth row in the Farey tree from figure 1.
Also, in order to facilitate a further discussion, we fix the value of the parameter B, and
calculate the phase diagram in the reduced parametric space (C, δ4), as shown in figure 3.
Other choices of the cross sections in the parameter space [22] lead to qualitatively the same
conclusions.

As is seen in figure 3, only the lowest order commensurate phases, namely 1/3, 1/4, 2/7,
and 3/10, are present for large values of C. By decreasing C, i.e. by moving towards the sine–
Gordon limit (C → 0), more and more higher order commensurate phases start to participate
in the phase diagram; e.g., for C ≈ 0.05 new phases with the commensurabilities 3/11, 4/13,
5/16 are present.

The phases which have nonzero average polarizations (10) are denoted by the letter F in
figure 3. As numerical calculations show, all phases with odd periods, e.g. those with wave
numbers 1/3, 2/7 and 3/11, turn out to be ferroelectric. In other words, configurations with
odd periods that have lowest averaged free energies all belong to the type A solutions from
table 2. Note also that all the lines in figure 3 represent phase transitions of the first order.

The phase diagram from figure 3 is in qualitative agreement with experimental phase
diagrams for some members of the A2BX4 family. As an example we take rubidium
tetrabromozincate, Rb2ZnBr4, for which there is a variety of data on the temperature and
pressure variation of the modulation wave number [11–13, 24–36]. Our phase diagram is
in qualitative agreement with high pressure measurements collected in figure 9 of [34] and
in figure 8 of [36]. In particular, the experimentally observed high order commensurate
phases with q equal to 2/7, 3/10, 3/11, 4/15, 5/17 and 7/24 are all present in figure 3.
Note also that our expression (6) (and figure 1), which is obtained as an inherent property
of the competition between two Umklapp terms [37], represents the theoretical explanation
of the phenomenological hint on the Farey tree structure of experimentally observed
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Figure 3. Phase diagram in the (C, δ4) plane for B = 0.3 and λ = 1. The numbers in the figure
represents wave numbers of ordering q of commensurate phases. Phases with nonzero average
polarizations 〈u〉 are marked by the letter F.

commensurabilities [34–36]. Regarding the macroscopic polarization associated with various
commensurate phases with odd periods, up to now the measurements are reported only
for that with the lowest commensurability (1/3) [34, 36]. It shows a finite ferroelectric
order, in agreement with our results. The experimental investigations of phases with higher
commensurabilities, for which our results suggest presence or absence of a finite ferroelectric
component, are highly desirable.

The next example from the A2BX4 family of is ammonium tetrachlorozincate,
(NH4)2ZnCl4. Its pressure–temperature phase diagram [39] is similar to that of Rb2ZnBr4. In
particular it contains a phase sequence with commensurabilities 1/3, 2/7, and 1/4, with some
ambiguities about region of the stability of phase 2/7 (see [40] and references therein). The
phase 1/3 is ferroelectric, the mixture of phases 2/7 and 1/4 shows a weak ferroelectricity, and
some antiferroelectric order is observed in the nonpolar phase 1/4. This is in agreement with
our results in figure 2. Indeed, the local polarization u(x) for a type A solution is constant
for phase 1/3, is nonpolar and has an antiferroelectric modulation for phase 1/4, while for the
phase 2/7 we expect a weak ferroelectricity since the solution u(x) of type A, although almost
antiferromagnetically modulated, still has a nonzero averaged value 〈u〉.

The last example, ammonium hydrogen selenate [41], NH4HSeO4 (together with its
deuterated version ND4DSeO4), does not belong to the A2BX4 family. The sequence of
phase transitions shown in figure 8 of [41], namely 1/3 (F), 3/10, 2/7 (F) and 1/4, can be also
reproduced by going along a particular path in figure 3. Let us also note that the present model
is not directly applicable to betaine–calcium chloride–dihydrate (BCCD), a system with a well
known rich sequence of IC–C and C–C phase transitions [42, 43]. In this material, usually
considered as a member of class II, one very probably encounters a competition of the first
(ferroelectric, q = 0) and some higher order (probably q = 1/4) commensurabilities.

Let us finally briefly focus on the form of the commensurate modulations. As already
mentioned, multisoliton structures are sometimes frozen in commensurate phases well below
the IC–C transitions [5–7]. Our numerical analysis shows that the stable solutions of higher
orders (like that with q = 2/7 shown in figure 2(c)) have the properties of dense, and not dilute,
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soliton lattices. It also suggests that particular solutions keep this form well below lock-in
phase transitions, and that the polarization closely follows such behaviour of the dominant
order parameter by forming the modulated ferroelectric or antiferroelectric patterns.

In conclusion, by extending the basic model [21, 22] with the secondary order parameter
representing the ferroelectric polarization, we obtain the phase diagram for the series of
commensurate phases which is in qualitative and quantitative agreement with experimental
phase diagrams for some A2BX4 compounds [34–36, 39, 40] as well as for ammonium
hydrogen selenate [41]. The main results of the present analysis are as follows. The wave
number of ordering is given by the harmless staircase obeying the Farey tree algorithm. The
commensurate phases are mainly characterized by dense soliton lattice modulations. The phase
transitions between successive lock-in phases are of the first order. Finally, we establish the
selection rule, by which only those among the commensurate phases which have odd periods
are accompanied by finite macroscopic electric polarizations.

The work is supported by the Ministry of Science and Technology of the Republic of
Croatia through the project No 119201.
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